Welcome to the *Cell* coloring book! I’m Sammy The Cell. I’m your guide as you color your way through biology.

Cell Press thinks biology is fun and exciting. We’ve created this coloring book to share our enthusiasm. Enjoy!

Copyright 2010 Cell Press

Designed and Illustrated by Yvonne Blanco
Text by Lara Szewczak

Editorial Contributions by:
Michaeleen Doucleff
Robert Kruger
Connie Lee
Nikla Emambokus
Susanne Tranguch
Brian Plosky
Karen Carniol
Emilie Marcus

Production:
Meredith Adinolfi

Marketing:
Jonathan Atkinson
Elisabeth Lyons

For more information, visit www.cell.com.

Printed on recycled paper.
This is a cell; it’s full of exciting biology!
The nucleus is where DNA is kept and RNA is made. Molecules move in and out through nuclear pores.
Cells store information in DNA. DNA is coded by four bases: A, G, C, and T. The linear sequence of these four letters forms the genome. Two strands of DNA associate through A-T and G-C pairs to make a double helix.

We store our DNA wrapped around proteins, like spools of thread all in a row.
DNA polymerase (and some friends) get to work copying DNA every time a cell divides.
Proteins are the cell’s machines. Information to make the proteins is stored in DNA. To get the instructions from DNA, RNA polymerase makes RNA. RNAs can then be made into proteins or can function on their own. Connect the dots to reveal the polymerase.
The endoplasmic reticulum (ER) is the first stop for proteins that are secreted to the plasma membrane. Ribosomes on the ER make proteins, which are then packaged into vesicles. The vesicles move through the Golgi Apparatus on their way to the cell surface.
The plasma membrane defines the boundaries of a cell. Cells need nutrients, molecules, and even water from the outside and the membrane contains pores and channels to allow transport into and out of the cell.
Mitochondria are the cell’s powerhouses. They produce ATP from fatty acids and sugars.

The inner membrane has folds called cristae that give it a lot of surface area to make ATP.
Motor proteins help move cargo (like proteins, vesicles, or even mitochondrial) through the cell. The motors walk along the cytoskeleton.
Mitosis, it's how cells divide! Each cell duplicates its chromosomes (its DNA) and then uses microtubules to pull a complete set of chromosomes into each daughter cell.
Stem cells can become any other kind of cell in the body. They are pluripotent. What do you think this cell will be?
Our skeleton is made of bones. Osteoblasts build bone up and osteoclasts break it down. Bone marrow in the center of the bone is where new blood cells are made.
This is a blood vessel, like an artery or a vein. It carries red blood cells. The main vessel branches off to smaller ones that reach throughout the body.
This is a muscle fiber. It gets bundled together with other fibers, and the bundles are wrapped together to make a muscle.
Fat cells called adipocytes store energy from the food we eat. They also burn energy when the body needs fuel.
The intestine is a place where the body interacts with food and microorganisms from the outside world. The cells that line the intestine protect the body from foreign invaders like bacteria. Cells of the immune system are nearby and ready to fight bacteria that make it past this barrier.
Bacteria are all around us and even inside us! They can be helpful, like the bacteria in yogurt, but some can make us sick. This bacterium moves by rotating its flagella.
Uh oh! Some bacteria got into the blood stream! Help my friends Phil and Mack get to the infection so that they can help fight it!
There are 100 billion neurons in your brain.
Neurons communicate with one another at synapses where two cells exchange signals. Here, the postsynaptic neuron takes up molecules released by the presynaptic neuron. Synapses form circuits between cells and are important for learning new things and remembering what you’ve learned.
Shhh. Listen. Hear that? Those are stereocilia in the ear at work. They move in response to sound, sending signals to the brain.

These are the hair cells in your ear.
Scientists use *Arabidopsis thaliana* to study cellular processes, like flowering, in plants.

Cells that produce flowers and leaves are located in the meristem.

When something goes wrong with these cells, a mutation occurs that can increase the number of petals or leave it petal-less with lots of pistils.
This is a virus particle. It's the kind of virus that can give you the flu. Each virus particle carries its genome wrapped up in layers of proteins and lipid membranes.

How many different parts can you spot?
Help me find the names of all the different cells and parts that you’ve seen in this book!